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Knowledge Graph

What are knowledge graphs?
» Multi-relational graph data
* (heterogeneous information network)

* Provide structured representation for semantic relationships
between real-world entities

A triple (h, r, t) represents a fact, ex:
(Eiffel Tower, is located in, Paris)




Knowledge Graph Embedding

Entities: low dimensional vectors
-Relations: parametric algebraic operators
*Triples: representation-based score function




Summary of Existing Approaches

- Define a score function for a triple: f,-(h, t)

» According to entity and relation representation

- Define a loss function to guide the training

* E.g., an observed triple scores higher than a negative one

Model Score Function
SE (Bordes et al.,[2011) — [|Wyr1h — W, ot|| h,t € R*, W,.. € R¥**

TransE (Bordes et al., [2013) —[[h+r — t h,r,t € R"
TransX —||gr1(h) + 1 — gra(t)] h,r,t € R"
DistMult (Yang et al.,[2014) (r,h,t) h,r t eRF
ComplEx (Trouillon et al.,[2016) Re((r,h,t)) h,r,t € C*
HolE (Nickel et al.,[2016) (r,h®t) h,r.t € R
ConvE (Dettmers et al.;2017) (o(vec(o([r,h] * Q))W), t) h,r,t € R"

RotatE —|[hor —t|[f h,r,t € C*,|r;| =1

Source: Sun et al., RotatE: Knowledge Graph Embedding by Relational Rotation in
Complex Space (ICLR’19)



Knowledge Graph Inference

-Knowledge Graph Completion
» Given an incomplete triple, infer the missing entity

* I..g., (Eiffel Tower, is located in, ?)

- Logical Query
» Given a more complicated query, infer the entity

- I.g.,
q= V3V (Compose( V)V Compose( V)
N\ —AwardedTo( V)N SungBy(V,V,)
» Return singers that have sung songs written by Lennon or McCartney but

never won Grammy Award
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Knowledge Graph Embedding-based KG reasonin

 Pros: Shows good scalability as well as robustness.

* Cons: Fails to capture high-order dependency between entities and relations.

Q’homasD Thomas
lva Ediso Iva EdISO

KGE-based |sMarr|ed 0 \ arnedTo
Inference
I|veln eln
{ officialLang | officialLang

C__English _> C__English _>



Logical Rule-based KG reasoning

* Pros: good at capturing high-order dependency.

 Cons: unable to handle noisy data as well as suffer from high computation complexity.

i i
lva Ediso lva Ediso

Logical Rule
Reasoning

speakLanguage(Person, Language) /
< liveln(Person, Country) A spgékLang

v officialLang | officialLanguage (Country, Language) . officjalLang
C__English _> English

Definite Horn Rules




Enriched by both:1+1>2!

Thomas

{ officialLang

__English_>

UniKER

isMa>r2edTo

\ /
speakl.ang speakLang
\

| officialLang
C__English _>




Combining Both Worlds

» Connecting the two worlds

Entities Constant Miller

Relation Predicate liveln(x, y)

Triple (a link on KG) Ground predicate liveln(Miller, USA)

A Path on KG A conjunction of ground liveIn(Thomas Alva Edison,
predicates USA) A officialLanguage

(USA, English)
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Existing Work

- Probabilistic logic is widely used to integrate both worlds

» PSL-based Regularization in Embedding Loss
* Leverage Probabilistic Soft Logic (PSL) [7] for satisfaction loss calculation

- Treat logical rules as additional regularization to embedding models,
where the satisfaction loss of ground rules is integrated into the original
embedding loss.

* Limitation: only utilize a sample set of rule instances

- Embedding-based Variational Inference for MLLN.
» Extends Markov Logic Network (MLN) [8]

* Leverage graph embedding to define variational distribution for all
possible hidden triples to conduct variational inference of MLN.

* Limitation: efficiency issue, sampling is required

11



Limitations of Existing Work

Categories Exact Logical
Inference

PSL-based KALE [1]
Regularization

RUGE [2] V X
Rocktaschel et al [3] X X
Embedding-based pLogicNet [4] V X
Variational
Inference to MLN ExpressGNN [5] N v

pGAT [6] v X
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Our Proposed Work: UniKER

|ldea 1: logical reasoning => enhance KG => enhance embedding

- use forward chaining to conduct exact inference

-ldea 2: Embedding => enhance KG => enhance logical reasoning
- Adding potentially usetul triples

- Removing potentially incorrect triples

-|dea 3: combine embedding and logical rules in an iterative
manner.

13



Traditional Logical Inference: MAX-SAT problem

J Knowledge Graph N
| Entities / Predicates 4 Observed Facts N\ !
I Country isMarriedTo isMarriedTo (Thomas Alva Edison, Mary Stilwell) | !
: USA liveln iIsMarriedTo (Thomas Alva Edison, Mina Miller) :
: Person iIsParentOf isMarriedTo (Mary Stilwell, Mina Miller I
I Thomas Alva Edison, Mary isSiblingOf liveln (Mina Miller, USA) |
| Stilwell, Mina Miller officialLanguage officialLanguage (USA, English) |
| Language speakLanguage I
\ i ]
S @ghSh / \ ) 7
All ground predicates — 4 All ground rules )

liveln (Thomas Alva Edison, USA)

liveln (Mary Stilwell , USA)

T

speaklLanguage (Thomas Alva Edison, English) < liveln (Thomas Alva Edison, USA)
A officialLlanguage (USA, English)

— speakLanguage (Mary Stilwell, English) < liveln (Mary Stilwell, USA)

speakLanguage(Person, Language) < liveln(Person,
Country) A officialLanguage (Country, Language)

\_ A officialLanguage (USA, English) "/

- NP-complete SAT Solver

Definite Horn rule

New fact speakLanguage (Mina Miller, English) 14



Forward Chaining for Horn rules: Exact and Fast

4 Observed Facts N\
isMarriedTo (Thomas Alva Edison, Mary Stilwell)
iIsMarriedTo (Thomas Alva Edison, Mina Miller) :
isMarriedTo (Mary Stilwell, Mina Miller involve only a small
liveln (Mina Miller, USA) subset of active ground

officialLanguage (USA, English) predicates/rules QhomaD
Country = USA lva Ediso

Language = EngN Person = Mina Miller isMarriedFo Married To

speakLanguage(Person, Language) < liveln(Person, Definite
Country) A officialLanguage (Country, Language) Horn rule

@ Forward Chaining

speakLanguage (Mina Miller, English) New fact

officialLang
C__English _>

Path Traverse
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Iterative Mutual Enhancement

-Enhance KGE via logical inference 2o
» Update KG via forward chaining-based logical reasoning

-Enhance logical inference via KGE
 Fxcluding potentially incorrect triples
* Including potentially usetul hidden triples

16



Update KG via Forward Chaining-based Logical Reasoning

Knowledge Graph Embedding Logical Rule-based Reasoning

liveln (Mina Miller, USA)

officiallanguage (USA, English)  Observed Facts

i,
lva Ediso

Country = USA

Language = EngNA /

speakLanguage(Person, Language) < liveln(Person, | Definite
Country) A officialLanguage (Country, Language) Horn rule

! ‘ Logical Inference

speakLanguage (Mina Miller, English) New fact

Embedding ":"!"':"lz":"l:'l

Learning  CLRREHRERERE [

17



Iterative Mutual Enhancement

-Enhance KGE via logical inference
» Update KG via forward chaining-based logical reasoning

-Enhance logical inference via KGE ¥
- Fxcluding potential incorrect triples
* Including potential usetul hidden triples

18



Excluding potential incorrect triples

CamE CamE
lva Ediso lva Ediso

isMarried¥o 15MarriedTo
In
| officialLang 1 officialLang
English English
[elelefelelelelelel  Learned
FEEEEERERE Embedding
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Including potential useful hidden triples

V triples in KGs Learned Embedding

? triples not in KGs Observed Facts W’
liveln (Mary Stilwell, USA) ? 200000080

officialLanguage (USA, English) v

Country = USA

. Person = Mary Stilwell
Language = English /

speakLanguage(Person, Language) < liveln(Person,

Country) A officialLanguage (Country, Language) Forward
Chaining

Definite Horn rule

20



Including potential useful hidden triples

V triples in KGs Learned Embedding

? triples not in KGs Observed Facts W"
liveln (Mary Stilwell, USA) v 0028000880

officialLanguage (USA, English) v

Add! CEEEEERER

Country = USA

. Person = Mary Stilwell
Language = English /

speakLanguage(Person, Language) < liveln(Person,
Country) A officialLanguage (Country, Language) Forward speakLanguage (Mina
Chaining Miller, English)

New fact

Definite Horn rule

21



Experimental Results

-KG completion task

Model Kinship FB15k-237 WNISRR

Hit@l Hu@l) MRR Hit@l Hit@l0 MRR Hit@]l Hit@l) MRR
RESCAL 0.489 (.894 0.639  0.108 0.322 0.179  0.123 0.239 0.162
SimplE 0.335 ().888 0.528  0.150 0.443 0.249  0.290 0.351 0.311
HypERT 0.364 0.903 0.551  0.252 0.520 0.341 0436 0.522 0.465
TuckERT 0.373 ().898 0.567  0.266 0.544 0.358  0.443 0.526 0.470
BLP' - - - 0.062 0.150 0.092  0.187 (0.358 0.254
MLN 0.655 0.732 0.694  0.067 0.160 0.098  0.191 0.361 0.259
KALE 0.433 0.869 0.598  0.131 0.424 0.230  0.032 00.353 0.172
RUGE 0.495 0.962 0.677  0.098 0.376 0.191  0.251 0.327 0.280
ExpressGNN 0.105 (.282 0.164  0.150 0.317 0.207  0.036 0.093 0.054
pLogicNet 0.683 0.874 0.768  0.261 0.567 0.364  0.301 0.410 0.340
pGAT' - - - 0.377 0.609 0.457  0.395 0.578 0.459
BoxE' - - - - 0.538 (0.337 - 0.541 0.451
TransE 0.221 0.874 0.453  0.231 0.527 0.330  0.007 0.406 0.165
UniKER-TransE 0.873 0.971 0.916  0.463 0.630 0.522  0.040 0.561 0.307
DistMult 0.360 (.885 0.543  0.220 0.486 0.308  0.304 0.409 0.338
UniKER-DistMult ~ 0.770 0.945 0.823  0.507 0.587 0.533 0.432 0.538 0.485
RotatE 0.787 0.933 0.862  0.237 0.526 0.334 0421 0.563 0.469

UniKER-RotatE 0.886 0.971 0.924  0.495 0.612 0.539 0437 0.580 0.492
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Experimental Results

A few iterations is good enough

T ——— -

§ 0.8

S

S 0.6

-g —— MRR

g - HIT@1

04y ..~ A HIT@10

0 1 2 3

#lterations of UniKER

Figure 3: Impact of #iterations on UniKER (KG completion
task on Kinship dataset).
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Robust to Noise

e construct a noisy dataset with noisy triples to be 40% of original data.

Model v Hit@ 1 Hit@10 MRR

TransE - 0.026 0.800 0.319

10 0.286 0.776 0.466
20 0.311 0.816 0.503
UniKER-TransE 30 0.322 0.833 0.520
40 0.352 0.812 0.523
50 0.292 0.791 0.486

Table 3: Ablation study on noise threshold #% on Kinship
dataset (whose train set 1s injected with noise)



Efficient

e Evaluate the scalability of forward chaining against a number of SOTA
inference algorithms for MLN

Model sub-YAGO3-10  sub-Kinship RCI1000 Kinship FBI15k-237 WNI8RR
MCMC 76433s - - - - _
MCSAT 1292s 25912s - - - _

BP 10s 16343s - - - _
lifttedBP 15s 16075s - - - _
Tufty (0.849s 1.398s 4.899s - - -
Forward Chaining 0.003s 0.034s 0.007s (0.593s 186s 30s

Table 7: Comparison of Inference Time for Forward Chaining vs. MLN.

25



Outline

*Introduction

-UniKER: Integrating Logical Rule into KGE

-KGE based Fuzzy Logic for Logical Query (AAAI’22) &
* By Xuelu Chen and Ziniu Hu et al.

Summary

28



From Link Prediction to Multi-Hop Logical Reasoning

. Located In w

Link Prediction Triple e~
(UCLA, LocatedIn,?)  geore Function f ( ee0® oo @00 )
h r t 29

Can we handle more complex queries on KGs?
First-Order Logic (FOL) Queries

q= V3V (Compose(John Lennon, V)V Compose(Paul McCartney,V))
A ~AwardedTo(Grammy Award, V) A SungBy(V, V)

John Compose__ Union

Lennon Intersection
.,  Compose N ~ SungBy
au
McCartney H ! g
/ Query target node
Grammy AwardedTo Negation

Award H:’.....»:'/

Anchor entity

29



Reasoning on Knowledge Graphs

- Methods (1)

* Traverse the KG to search for results

* e.g. by subgraph matching (Gstore [Zou, VLDB'2011])
* Drawbacks:

* Incompleteness of KGs
* Real-world KGs are often severely incomplete
* A single missing edge may make the query unanswerable

* Impossible to get answers for many queries by directly traversing KG
* Computation Complexity

* Wikidata reports that their query engine performance falls off a cliff and may time out, when the number in a
group of interest (e.g. people born in France) exceeds a certain threshold

How can we make it faster and make it robust to missing edges?

30


https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/query_optimization

Reasoning on Knowledge Graphs

- Methods (2)
» Logical query embedding models

* Embed logical queries and entities in the same vector space and conduct query
answering via dense similarity search.

* Representative works:

* GQE [Hamilton et al., NeurIPS'2018], Query2Box [Ren et al., ICLR'2020], BetaE [Ren & Leskovec,
NeurlPS'2020], etc.

* Merits

* Can handle missing edges
* No need to model intermediate entities

* Inference in constant time with locality sensitive hashing

31



Reasoning on Knowledge Graphs

- Methods (2)
» Logical query embedding models

» Challenges

* These logical operators are parameterized so that they require a large number of
complex FOL queries as training data

* Greatly limits the scope of application

* Such data is often arduous or even inaccessible to collect in most real-world KGs!!

* Does not satisfy the axiomatic systems of classical logic

* Limits inference accuracy

32



Our solution: FuzzQE

» Merits

» F'uzzQE satishies the axioms of logical operations and 1s capable of
preserving the logical operation properties in vector space

» Significantly better performance to the state-of-the-art methods in
answering FOL queries.

» Logical operators do not require learning any operator specific
parameters

* Even it is trained with only link prediction and no complex queries, it

works well

* Comparable to state-of-the-art models that are trained with extra complex query data
* Significantly outperforms previous models under the same training condition (link prediction only)

33



Challenging Questions

« Combining Representation Learning with Logical Reasoning

- How to represent an entity?
* Point? Box? Distribution?
- How to represent a set from a subquery?
* Point? Box? Distribution?
- How to detine an embedding-based tfunction denoting an entity belonging to a set?
« How to recursively define embedding for each logical expression?
« How to define an embedding-based function for each logical operator (and, or,
negation)?

- How to preserve logical laws (additional constrains) that logical operators have to
preserve?

« Commutative, associative, etc.
« How to train the model 1n a self-supervised way? (No additional Query-Answer pair)

34
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Bridging set and logical expressions

A FOL query corresponds to an answer set

q= V3V (Compose( , V)V Compose( V)
N —AwardedTo( VYN SungBy(V, V)

s(x):= 3y (Compose( ,¥) V Compose( ,Y))
N —AwardedTo( ,¥) A SungBy(y, x)

q = {x|s(x) is true}

36



Logical operators vs. set operators

*Query Conjunction — Set Intersection
*Query Disjunction — Set Union
*Query Negation — Set Complement

37
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Representing set, element, and membership

- Existing approaches

q,e,p(qle)?
GQE Query2Box BetaE
—1
q q1/\q> — 2
q ! -=- 1ANQ2
'
‘
q1/\q>
o
q2 dz

39



Our approach

- Query as a fuzzy Set, which is represented by
-S, €[0,1]4
 Properties

- (1,..,1):Q
- (0,...,0):0

 Subset, negation

- Entity as a stochastic vector
P, €[0,1]%,and ¥, P, (i) =1
-Embedding-based membership function
d

6(q,€) = Eenp,[e € Sg) = > Pr(e € Uy) Pr(Ui C Sy) = S,"p.

1=1 40
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Defining set operations that preserve logical laws | &~

-Representing atomic query (project an entity to a set)
o Sq — pr(pa) — g(LN(er£ + br)) e.g., Compose( V)

-Given the representations of two subqueries, define set
operators via product logic (a special case of fuzzy logic)

01 N g2 i C(Sqy,Sg9) = Sq; ©Sg,
1V aq: D(Sy.S,,) =S4 +S;, — Sy, 05,

—q: N(Sy) =1-35,

42



More about fuzzy logic

negation: c(x) =1 —x
t-norm: conjunction (set intersection)

t-conorm: disjunction (set union)
«  Dehined by De Morgan's law

t-norm (A) t-conorm (V) Special Properties
minimum (Godel)  #(a,b) = min(a, b) s(a,b) = max(a,b) idempotent
product t(a,b) = ab s(a,b) =a+b— ab strict monotonicity
Fukasiewicz t(a,b) = max(a+b—1,0) s(a,b) =min(a +b,1) nilpotent
Gadel tukasiewicz product
o 0.7 a0 0.7 a 0.7
2 0.4 : g | 04 q2 i 0.4 |
1 Ylargest . I : ' : robabilit '
q1/\q _ o I smallest [ Ag- | P Yy U5 I
1z 0.4 intersection q1/A\q; I intersection r ! t\dz | multiplication =8 |
0:Va; 0.7 a.Va, ¥ o { 0:1Vay] 0.82 I

43



Well, why are they good?

- Consistent with logical axioms!

- An example of conjunction assoclativity

(

- Previous approach GQE uses average as logical operator
conjunction

+b b+
24c  a+=

* But, =¥— #+ —=
2 2

And: (S1°53) 253 =51°(52°53)

44



Axiomatic systems of Boolean logic

-1t is important to understand logic laws and take them into
consideration when designing logical operators for QE
models

 Few ettorts have been devoted mto such theoretical analysis of QE
models

To do that, we must understand how logical operations are
defined

45



Axiomatic systems of Boolean logic

-Let L be the set of all the valid logic formulae under a
logic system, and

Y4, P,, Y3 € L represent logical formulae.
-1(-) denotes the truth value of a logical formula.

46



Axiomatic systems of Boolean logic

Semantics of Boolean logic is defined by:
- The interpretation I: £ — {0,1}

- The truth value of a logical formula
- L:the set of all the valid logic formulae

- Logical implication

« 1 = P, holds if and only if I(y,) = 1(Y4)
» The Modus Ponens inference rule

e From ¥4 and Y1 — P, mfer Y,

- A set of axioms written in Hilbert-style deductive systems
- Define other logic connectives via logic implication (—)

47



From Boolean Logic to Fuzzy Logic

«1(34) isin [0,1]
«AXioms preserve

* All the operations 1n tuzzy logic will have the same results as
Boolean logic, if the operations are applied to {0,1}

- Extra axioms to define logical operations for (0,1)

48



How is conjunction defined

*logical implication
* 11 = P, holds if and only if I(y1) < 1(WY,)

The following three axioms characterize A:

Ensure that
/lvbl /\d)Q — wl © 1Y AYy) < 1(Yq)
771)1 A ¢2 N wQ — [(P1 A2) < 1(Y2)

They also imply commutativity and associativity of A!

49



Connect to embedding model

Note:
l{Compose(John Lennon, Let It Be)) :=

¢(Compose(John Lennon, ?), Let it Be)
Iy AP2) S 1Y)

eESl/\SZ<—> eESlAeESZ

l{Compose(John Lennon, Let It Be) A Compose(Paul McCartney, Let It Be))
< I(Compose(John Lennon, Let It Be))

Embedding model Query Entity
¢(Compose(John Lennon, ?) A Compose(Paul McCartney, ? ), Let It Be)
< ¢(Compose(John Lennon, ? ), Let It Be)

50



Logical Laws and Model Properties

Embedding model ¢(q,e) estimates the probability that entity e answers query q

Axioms and derived logic laws Desired model property

in classical logic according to the logic law
Logic Law Model Property
Conjunction
Elimination
I 1 N — Yy (g1 N gz, e) < d(q1,e)
Y1 NPy —> g o(q1 A qz2,€) < d(qa,€)
A Commutativity
I | 1y A < P2 Al 0((q1 A g2),€) = d((g2 A qr), €)
Associativity
I | (i1 Aha) ANps < || d((q1 A g2) A g3, e)
V1 A (2 Ah3) = ¢(q1 A (g2 A\ g3), €)

51



Logic Law Model Property

Conjunction
Elimination

I P A 'lf)z — ’1,/)1 ¢(QL A g2, 6) < Q(Ql« B)
Py A g —> g O(q1 N g2.€) < &gz, €)

A ..
‘ Commutativity

I i Aty < e A d((q1 AN g2).e) = d((g2 A gu),e)

Associativity

I (1 Adhe) ANz < d((q1 A g2) A gz, e)
U1 A (P2 A h3) =o(qr AN (g2 A gs).e)
Disjunction
Amplification

v Y1 vV P(q1,€) < d(q1 V gz, €)
Y1 = 1 VU d(q2.€) < d(q1 V g2, €)

- v Commutativity

Vo Uy Ve & e Vi o((q1 Va2).e) = od((q2V aqu),e)

Associativity
VI (1 Vo) Viig < o((q1V q2) Vs, e)
Y1V (P2 V 93) =o(q1 V(q2V q3),€)
Involution
‘ - vl _'_'/":EI‘TI — (Ir/‘l (ﬁ(q 8) - (Jb(_'_LQ" 6)

Non-Contradiction
VI 9y Ay =0 d(g.e)t = d(-g.e)l

52



Analysis of Previous Models' Capability of Preserving those Properties

GQE Query2Box BetaE
—_—0
q1/\q - %
ql‘ h T @G
q1/\q ‘
q> q> 00 01 02 03 04 05 06 07
A \V} -

Expr. (Closed) Com. Asso. Elim. Expr. (Closed) Com. Asso. Ampli. Expr. (Closed) Inv. Non-Contra.

GQE v (V') v X X viX) v v X N/A N/A
Query2Box v (V) v v v viX)y v v v X N/A N/A
(1) DNF v (X) v v
BetaE (V) v X X ()DM v(v) v Y X vV(v') v X

None of previous models can satisfy all these properties 63



Analysis of Previous Models' Capability of Preserving those Properties

N

\%

—

Expr. (Closed) Com. Asso. Elim. Expr. (Closed) Com. Asso. Ampli. Expr. (Closed) Inv. Non-Contra.

GQE v (V') v X X viX) v v v X N/A N/A
Query2Box v (V) v v v viX) Vv v v X N/A N/A
ODNFvX) v v v
BetaE v (V') v X X (i) DM v (v) ¢ v X v (V') v X
‘ FuzzOE () v v VW) v vV V() v v

\

Our model can!
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Dataset

FB15k-237, NELL995 with FOL queries in 14 query structures

/ relation projection / union ,’/i:tersection a‘,.‘_.x“"complement (negation)
1p (link prediction) 2p 3p
o~ e~ @[
anchor entity target variable
2i 3' 'p pi
Q—>D
O—EH:J Q»DD = D =
2u up
2in 3in inp pin pin
®-LF-~] .*D‘D/:.;. o-1--{+0 &HT.g e-[-0-
@111 o OO e-1-[1 P

55



Self-supervised training

» Logical operators do not require learning any operator specific
parameters

» Significantly outperforms previous models under the same training
condiion (KG edges only)

« Comparable to state-of-the-art models that are trained with extra
complex query data

k
. 1
L = —loga(o(g.€) =7) = 7 2 loga(y = 6(q )
1=1

56



Experimental Results: Trained with Atomic Querie

Table 6.8: MRR results (%) of logical query embedding models that are trained with only link pre-
diction. This task tests the ability of the model to generalize to arbitrary complex logical queries, when no
complex logical query data is available for training. Avggpro and Avgneg denote the average MRR on EPFO
(d, A. V) queries and queries containing negation respectively.

Model |A\«'gb-pm AVgnes | Ip 2p 3p 21 31t pi ip 2u up |2ir1 3in inp pin pni

FB15k-237
GQE 17.7 N/A |41.6 79 54 250 336 163 109 11.9 6.2 [N/A N/A N/A N/A N/A
Query2Box | 18.2 N/A 42,6 69 47 273 36.8 17.5 11.1 11.7 55 [N/A N/A N/A N/A N/A
BetaE 5.8 0.5 |37.7 5.6 44 233 345 151 78 95 45 (0.1 1.1 08 0.1 0.2
FuzzQF 21.8 6.6 |44.0 10.8 8.6 323 41.4 227 15.1 135 87 |77 95 7.0 41 4.7
NELL995
GQE 21.7 N/A |47.2 127 9.3 30.6 37.0 20.6 16.1 12.6 9.6 [N/A N/A N/A N/A N/A
Query2Box | 21.6 N/A |47.6 125 8.7 30.7 365 20.5 16.0 12.7 9.6 [N/A N/A N/A N/A N/A
BetaE 19.0 0.4 |53.1 60 39 320 37.7 158 85 10.1 35 (0.1 14 0.1 0.1 0.1
FuzzQE 27.1 7.3 |57.6 17.2 13.3 38.2 41.5 27.0 194 169 12.7/ 9.1 83 89 44 5.6
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Experimental Results: Trained with Additional Queri

Table 6.7: MRR results (%) on answering FOL queries. Report MRR results (%) on test FOL queries.
Avggpro and Avgne, denote the average MRR on EPFO queries (queries with J, A, V and without negation)
and queries containing negation respectively. Results of GQE, Query2Box, and BetaE are taken from [81]].

Type of Model | Model | Avgeppo Avgneg | Ip 2p 3p 2i 31 pi ip 2u up |2in 3in inp pin pni
FB15k-237

GQE 16.3 N/A 350 7.2 53 233 346 165 107 82 5.7 |[N/A N/A N/A N/A N/A

Query2Box 20.1 N/A 406 94 638 295 423 212 126 11.3 7.6 | N/A N/A N/A N/A N/A

Query Embedding | = gk 209 55 [39.0 109 10.0 288 425 224 126 124 97 [51 79 74 35 34

FuzzQE 24.2 8.5 422 133 10.2 33.0 47.3 26.2 189 15.6 10.8| 9.7 126 7.8 58 6.6

Query Optimization|  CQD | 21.7 N/A |463 99 59 317 413 218 158 142 86 |N/A N/A N/A N/A N/A
NELL995

GQE 18.6 N/A |328 119 96 275 352 184 144 85 88 |N/A NJA N/A NA NA

Erbedding | Query2Box | 22.9 N/A 422 140 112 333 445 224 168 113 103 |N/A N/A N/A N/A N/A

Query Embedding BetaE 24.6 59 |53.0 130 114 376 475 241 143 122 85|51 78 100 3.1 35

FuzzQE 29.3 8.0 |58.1 193 157 398 50.3 28.1 21.8 17.3 13.7| 83 10.2 115 46 54

Query 0ptimizali0n| CcQD | 28.4 N/A |6ﬂ.ﬂ' 16.5 10.4 404 496 28.6 20.8 168 12.6|N!A N/A N/A N/A N/A
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Compare with CQD Regarding Inference Time

Average time (milliseconds) for answering a query
68.1
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] w s u
o (=] o o
1 1 1

I—I
o
]

13.9 ' '

. 0.3 . 0.4
CQD FuzzQE cQD FuzzQE

e Average time (milliseconds) for answering an FOL query on a single NVIDIA GP102 TITAN Xp (12GB) GPU.
e FB15k-237 contains 14,505 entities.
e NELL995 contains 63,361 entities, roughly 4 times the number of FB15k-237.
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Outline

Introduction
*Integrating Logical Rule into KGE
- KGE based Fuzzy Logic for Logical Query

«Summary @
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Take Away

- Logical rules provide higher-order dependency constraints
among entities and relations

-When designing KGE-based logical query models, fuzzy logic
provides a theoretical guidance in designing operators

-Both can reduce our demanding for data
» Interence for cold-start entities

- Handle query types that are never seen 1n the training data
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-RLogic: Recursive Logical Rule Learning from Knowledge

Graphs

- Kewel Cheng, Jiahao Liu, Wei Wang, Yizhou Sun
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